63 research outputs found

    Sun-as-a-Star Observation of Flares in Lyman {\alpha} by the PROBA2/LYRA radiometer

    Full text link
    There are very few reports of flare signatures in the solar irradiance at H i Lyman {\alpha} at 121.5 nm, i.e. the strongest line of the solar spectrum. The LYRA radiometer onboard PROBA2 has observed several flares for which unambiguous signatures have been found in its Lyman-{\alpha} channel. Here we present a brief overview of these observations followed by a detailed study of one of them, the M2 flare that occurred on 8 February 2010. For this flare, the flux in the LYRA Lyman-{\alpha} channel increased by 0.6%, which represents about twice the energy radiated in the GOES soft X-ray channel and is comparable with the energy radiated in the He ii line at 30.4 nm. The Lyman-{\alpha} emission represents only a minor part of the total radiated energy of this flare, for which a white-light continuum was detected. Additionally, we found that the Lyman-{\alpha} flare profile follows the gradual phase but peaks before other wavelengths. This M2 flare was very localized and has a very brief impulsive phase, but more statistics are needed to determine if these factors influence the presence of a Lyman-{\alpha} flare signal strong enough to appear in the solar irradiance.Comment: in press for Solar Physic

    The detection of ultra-relativistic electrons in low Earth orbit

    Full text link
    Aims. To better understand the radiation environment in low Earth orbit (LEO), the analysis of in-situ observations of a variety of particles, at different atmospheric heights, and in a wide range of energies, is needed. Methods. We present an analysis of energetic particles, indirectly detected by the Large Yield RAdiometer (LYRA) instrument on board ESA's Project for On-board Autonomy 2 (PROBA2) satellite as background signal. Combining Energetic Particle Telescope (EPT) observations with LYRA data for an overlapping period of time, we identified these particles as electrons with an energy range of 2 to 8 MeV. Results. The observed events are strongly correlated to geo-magnetic activity and appear even during modest disturbances. They are also well confined geographically within the L=4-6 McIlwain zone, which makes it possible to identify their source. Conclusions. Although highly energetic particles are commonly perturbing data acquisition of space instruments, we show in this work that ultra-relativistic electrons with energies in the range of 2-8 MeV are detected only at high latitudes, while not present in the South Atlantic Anomaly region.Comment: Topical Issue: Flares, CMEs and SEPs and their space weather impacts; 20 pages; 7 figures; Presented during 13th European Space Weather Week, 201

    The LYRA Instrument Onboard PROBA2: Description and In-Flight Performance

    Full text link
    The Large Yield Radiometer (LYRA) is an XUV-EUV-MUV (soft X-ray to mid-ultraviolet) solar radiometer onboard the European Space Agency PROBA2 mission that was launched in November 2009. LYRA acquires solar irradiance measurements at a high cadence (nominally 20 Hz) in four broad spectral channels, from soft X-ray to MUV, that have been chosen for their relevance to solar physics, space weather and aeronomy. In this article, we briefly review the design of the instrument, give an overview of the data products distributed through the instrument website, and describe the way that data are calibrated. We also briefly present a summary of the main fields of research currently under investigation by the LYRA consortium

    Simple Magnetic Flux Balance as an Indicator of Neon VIII Doppler Velocity Partitioning in an Equatorial Coronal Hole

    Get PDF
    We present a novel investigation into the relationship between simple estimates of magnetic flux balance and the Ne VIII Doppler velocity partitioning of a large equatorial coronal hole observed by the Solar Ultraviolet Measurements of Emitted Radiation spectrometer (SUMER) on the Solar and Heliospheric Observatory (SOHO) in November 1999. We demonstrate that a considerable fraction of the large scale Doppler velocity pattern in the coronal hole can be qualitatively described by simple measures of the local magnetic field conditions, i.e., the relative unbalance of magnetic polarities and the radial distance required to balance local flux concentrations with those of opposite polarity.Comment: To appear ApJL (June

    Modelling structural plasticity

    Get PDF

    Simultaneous Observations of the Chromosphere with TRACE and SUMER

    Full text link
    Using mainly the 1600 angstrom continuum channel, and also the 1216 angstrom Lyman-alpha channel (which includes some UV continuum and C IV emission), aboard the TRACE satellite, we observed the complete lifetime of a transient, bright chromospheric loop. Simultaneous observations with the SUMER instrument aboard the SOHO spacecraft revealed interesting material velocities through the Doppler effect existing above the chromospheric loop imaged with TRACE, possibly corresponding to extended non-visible loops, or the base of an X-ray jet.Comment: 14 pages, 10 figures, accepted by Solar Physic

    Relativistic treatment of harmonics from impurity systems in quantum wires

    Get PDF
    Within a one particle approximation of the Dirac equation we investigate a defect system in a quantum wire. We demonstrate that by minimally coupling a laser field of frequency omega to such an impurity system, one may generate harmonics of multiples of the driving frequency. In a multiple defect system one may employ the distance between the defects in order to tune the cut-off frequency.Comment: 9 pages Latex, 8 eps figures, section added, numerics improve

    On the statistical detection of propagating waves in polar coronal holes

    Full text link
    Waves are important for the heating of the solar corona and the acceleration of the solar wind. We have examined a long spectral time series of a northern coronal hole observed on the 20th October 1996, with the SUMER spectrometer onboard SoHO. The observations were obtained in a transition region N IV 765 A line and in a low coronal Ne VIII 770 A line. Our observations indicate the presence of compressional waves with periods of ~25 min. Using Fourier techniques, we measured the phase delays between intensity as well as velocity oscillations in the two chosen lines. From this we are able to measure the travel time of the propagating oscillations and, hence, the propagation speeds of the waves producing the oscillations. We found that there is a difference in the nature of the propagation in bright ('network') and dark ('internetwork') regions with the latter sometimes showing evidence for downwardly propagating waves that is not seen in the former. As, in all cases, the measured propagation speeds are subsonic, we concluded that the detected waves are slow magnetoacoustic in nature.Comment: 7 pages, 7 figure

    In-flight performance of the solar UV radiometer LYRA/PROBA-2

    Full text link
    LYRA is a solar radiometer, part of the PROBA-2 micro-satellite payload (Fig. 1). The PROBA-2 [1] mission has been launched on 02 November 2009 with a Rockot launcher to a Sun-synchronous orbit at an altitude of 725 km. Its nominal operation duration is two years with possible extension of 2 years. PROBA-2 is a small satellite developed under an ESA General Support Technology Program (GSTP) contract to perform an in-flight demonstration of new space technologies and support a scientific mission for a set of selected instruments [2]. PROBA-2 host 17 technological demonstrators and 4 scientific instruments. The mission is tracked by the ESA Redu Mission Operation Center. One of the four scientific instruments is LYRA that monitors the solar irradiance at a high cadence (> 20 Hz) in four soft X-Ray to VUV large passbands: the “Lyman-Alpha” channel, the “Herzberg” continuum range, the “Aluminium” and “Zirconium” filter channels. The radiometric calibration is traceable to synchrotron source standards [3]. LYRA benefits from wide bandgap detectors based on diamond. It is the first space assessment of these revolutionary UV detectors for astrophysics. Diamond sensors make the instruments radiation-hard and solar-blind (insensitive to the strong solar visible light) and, therefore, visible light blocking filters become superfluous. To correlate the data of this new detector technology, silicon detectors with well known characteristics are also embarked. Due to the strict allocated mass and power budget (5 kg, 5W), and poor priority to the payload needs on such platform, an optimization and a robustness of the instrument was necessary. The first switch-on occured on 16 November 2009. Since then the instrument performances have been monitored and analyzed during the commissioning period. This paper presents the first-light and preliminary performance analysis

    Signatures of transition region explosive events in hydrogen Ly-beta profiles

    Full text link
    We search for signatures of transition region explosive events (EEs) in hydrogen Ly-beta profiles. Two rasters made by the SUMER (Solar Ultraviolet Measurements of Emitted Radiation) instrument on board SOHO in a quiet-Sun region and an equatorial coronal hole are selected for our study. Transition region explosive events are identified from profiles of C II 1037 Angstrom and O VI 1032 Angstrom, respectively. We compare Ly-beta profiles during EEs with those averaged in the entire quiet-Sun and coronal-hole regions. The relationship between the peak emission of Ly-beta profiles and the wing emission of C II and O VI during EEs is investigated. We find that the central part of Ly-beta profiles becomes more reversed and the distance of the two peaks becomes larger during EEs, both in the coronal hole and in the quiet Sun. The average Ly-beta profile of the EEs detected by C II has an obvious stronger blue peak. During EEs, there is a clear correlation between the increased peak emission of Ly-beta profiles and the enhanced wing emission of the C II and O VI lines. The correlation is more pronounced for the Ly-beta peaks and C II wings, and less significant for the Ly-beta blue peak and O VI blue wing. We also find that the Ly-beta profiles are more reversed in the coronal hole than in the quiet Sun. We suggest that the jets produced by EEs emit Doppler-shifted Ly-beta photons, causing enhanced emission at positions of the peaks of Ly-beta profiles. The more-reversed Ly-beta profiles confirm the presence of a larger opacity in the coronal hole than in the quiet Sun. The finding that EEs modify the Ly-beta line profile in QS and CHs implies that one should be careful in the modelling and interpretation of relevant observational data.Comment: accepted for publication in Astronomy and Astrophysics; 8 pages, 2 tables, 5 figure
    corecore